ONGEL \rightarrow SEE RAW SCORES $\rightarrow \angle A B$ grade $[8,1,1, \cdot 13, \cdot \cdot 2,2,2]$
SECl Snafuf Ql GIVE YOU D2 RAW
 SCORE

clich onsinzol Sple

\{\$1a, \$1b, \$5c\}

Jack draws a bill first

 Jill draws secondfrom the two bills then remaining

EX: GIVENINFO $P(A)=1 \quad P(B)=3$
$A B \leq 内$
$A B \subset B$
$50 P(A B)=.06$
$P\left(A B^{C}\right)=.04$

$$
\begin{aligned}
& P\left(A^{C} B\right)=.24 \\
& P\left(A^{C} B^{C}\right)=\frac{.66}{1}
\end{aligned}
$$

TREE

(A. 1.9

$P(B \mid A)=.6 \quad A B=.1(6) \mid D E E P(B \mid A)$ $D E \neq P(R B) / P(A)$ $=.06 \% 1=.6$ $P(B \mid A C)$ $=P\left(A^{\wedge} B\right) / P\left(A^{C}\right)$ $=.24 / .9$

TR "oil" = oil is present
 $"+"=$ a test for oil is positive
 " - " = a test for oil is negative

TOTAL DFBRANETESE1 P (oil) $=0.3$
 $\mathrm{P}(+\mid$ oil $)=0.9$
 $\mathrm{P}(+\mid$ no oil $)=0.4$

$\mathrm{P}($ oil $)=0.3$
 $$
\begin{gathered} \mathrm{P}(+\mid \text { oil })=0.9 \quad \mathrm{P}(-\mid \text { oil })=0.1 \\ \mathrm{P}(+\mid \text { no oil })=0.4 \end{gathered}
$$

sumod

VENM DLABRAN

TOTAL PBOBABLITY

 $\mathbf{P}(+)=\mathbf{P}($ oil +) $+\mathbf{P}($ no oil +) $0.55=0.27+0.28$$$
\begin{aligned}
& \text { DEDUCE (TOT PROSY) } \\
& P(t)=.27+.28
\end{aligned}
$$

$$
\frac{0.9}{0.3}
$$

 no oil
Oil contributes 0.27 to the total $\mathbf{P}(+)=0.55$.
0.03
0.27
0.28
0.42

BRIES
$\mathbb{P}(0 \mathrm{ill} \mid+t)=\mathbb{P}(0 \mathrm{il} / t) / \mathbb{P}(t) \quad 0.27$ oil
$=0271(027+028)$

$$
=0.4909
$$

0.28 oil+

Oil contributes 0.27 of the total $\mathbf{P}(+)=\mathbf{0 . 2 7 + 0 . 2 8}$.

ME MTCAL TEST

MEDTBAL TEST

$$
P(D 15 \mid+)=\frac{.0098}{.0098+.0297} \approx
$$

$$
0.01
$$

disease

$$
0.98\left(\begin{array}{l}
+0098 \\
\hline
\end{array}\right.
$$

We need to calculate P (diseased $\mathrm{I}+$), the conditional probability that we have this disease GIVEN we've tested positive for it.

CALCOLSTINBOURCUANBES $\begin{array}{llll}0.01 & 0.98 & \longrightarrow & 0.0098 \\ \text { disease } & 0.02 & & \\ & & & 0.0002\end{array}$

$\mathbf{P}(+)=0.0098+0.0297=0.0395$
$\mathbf{P}($ disease $I+)=\mathbf{P}($ disease +) $/ \mathbf{P}(+)$
$=.0098 / 0.0395=0.248$. ©nlly $25 / 5$

omemavoverwholmayood costimialligiosereem

EVEN FOR THIS ACCURATE TEST: P (diseased $\mathrm{I}+$) is only around 25% because the non-diseased group is so predominant that most positives come from it.

FALSEPPSETIUEPARADOU

omomayoverwholmayoul icot ivialligiosereen

WHEN THE DISEASE IS TRULY RARE: $\mathrm{P}($ diseased $\mathrm{I}+$) is a mere $\mathbf{3 . 2 \%}$ because the huge non-diseased group has completely overwhelmed the test, which no longer has value

FOR MEDICAL PRACTICE: Good diagnostic tests will be of little use if the system is overwhelmed by lots of healthy people taking the test. Screen patients first.

FOR BUSINESS: Good sales people capably focus their efforts on likely buyers, leading to increased sales. They can be rendered ineffective by feeding them too many false leads, as with massive un-targeted sales promotions.

